S Y S E

Tornado Query
v.1.0.3
Tutorial

SYSE 2012-05-23

Table of contents |

Table of contents
Table of coONtents i
INtrOdUCTION .. 1
Getting Started ... 2
Example database 3
Getting @ CONNECHIONttt e e e e 5
(=T 01 1= 7
USAgE ottt 12
INSER T . 13
UP D AT E . 15
DELETE .. 16
SELE T o 17
LOggINg oot 20

©2012,

SYSE ¢« ALL RIGHTS RESERVED.

Table of contents

©2012,

SYSE

ALL RIGHTS RESERVED.

1 Introduction 1

Introduction

1.1 Introduction

Tornado Query is a persistence framework heavily influenced by mybatis, without the XML. It sports
automatic CRUD based on Mappersthat translate SQL result sets to domain objects, and lets you use
your domain objects as parameters to queries.

» Automatic creation of Mappers based on database metadata
CRUD (Create, Read, Update, Delete)

Insert statements knows how to increment sequences
Autogenerated SQL with joins

NOTE: Even though Tornado Query can save you alot of time for example by creating the join part
of your queries, the main focusisstill to let Y OU write your SQL, your way, without interference. If
you know SQL, there islittle extra you need to know to use Tornado Query efficiently.

Add Tornado Query to your Maven project:

<dependency>
<gr oupl d>no. t or nado</ gr oupl d>
<artifactld>query</artifactld>
<ver si on>1. 0. 3</ ver si on>

</ dependency>

Check out the source:

svn checkout https://opensource. subversion. no/ query/trunk query

©2012, SYSE « ALL RIGHTS RESERVED.

http://mybatis.org/

2 Getting Started 2

Getting Started

2.1 Getting Started
In this tutorial we'll introduce an example database and some corresponding domain objects.

Start by examining the example schema, and move on to how to get a database connection. From
there, welll start exploring how Tornado Query can save you time and make you write less code, but
accomplish more, in less time than you are used to!

NOTE: Thetutorial isaso availablein PDF format.

©2012, SYSE « ALL RIGHTS RESERVED.

http://query.tornado.no/tornado-query.pdf

3 Example database 3

3 Example database

3.1 Example database
Thistutorial will use an example database with three tables, and three corresponding domain objects.
We use PostgreSQL syntax in the examples. Hereisthe DDL for our database:

CREATE SEQUENCE country_id;
CREATE SEQUENCE address_i d;
CREATE SEQUENCE cust oner _i d;

CREATE TABLE country (
id | NTEGER NOT NULL PRI MARY KEY DEFAULT nextval (' country_id'),
name TEXT

)

CREATE TABLE address (
id | NTEGER NOT NULL DEFAULT nextval (' address_id'),
street TEXT,
zi p TEXT,
city TEXT,
country | NTEGER NOT NULL REFERENCES country(id)
)

CREATE TABLE customer (
id | NTEGER NOT NULL PRI MARY KEY DEFAULT nextval (' customer_id'),
name TEXT,
emai | TEXT,
del i very_address | NTEGER NOT NULL REFERENCES address(id),
bi I 1i ng_address | NTEGER NOT NULL REFERENCES address(i d)

)

And these are our corresponding domain objects, getters and setters omitted for brevity:

©2012, SYSE « ALL RIGHTS RESERVED.

3 Example database

public
pr
pr

public
pr
pr
pr
pr
pr

public
pr
pr
pr
pr
pr

class Country {
vate |Integer id;
vate String naneg;

cl ass Address {

vate |Integer id;

vate String street;
vate String zip;

vate String city;
vate Country country;

cl ass Custoner {

vate |Integer id;

vate String naneg;

vate String enmil;

vat e Address deliveryAddress;
vate Address billingAddress;

©2012, SYSE « ALL RIGHTS RESERVED.

4 Getting a connection 5

Getting a connection

4.1 Getting a connection

Tornado Query expectsthat you giveit aj ava. sql . Connect i on, and doesn't really help you in
obtaining one. Here we'll introduce some ways to do that, and show you how you would typically use
Tornado Query in your applications. Please feel free to skip this chapter for now, and revisit it once
you start actually using Tornado Query. Read about mappers and usage to wet your appetite, then
come back for the details!

4.1.1 Explicit

The Quer y classhasastatic Thr eadLocal where you can set a connection before performing
gueries. Tornado Query expects this connection to be ready to use, and will not commit, rollback or
close this connection in any way. Init's simplest form, it means that you can use Tornado Query like
this:

/] Create a connection and set it
Query. connection. set (Dri ver Manager . get Connecti on("j dbc: post gresqgl : / host/ dat abase"));

/1 Performyour queries here

/1 O ose the connection
Query. connection.get().close();

Instead of using the static Thr eadLocal , you can also supply each Query object with a specific
connection. Remember that you are still responsible for closing, committing and rolling it back:

/1 Create a connection and set it
Connection conn = Driver Manager. get Connecti on("j dbc: postgresql :/host/dat abase");

/1l Set the connection on each query
Query.create(...).connection(conn);

/1 C ose the connection
conn. cl ose();

4.1.2 WebApp

In aweb application it might make more senseto let aFi | t er make sure you have a connection, and
even take care of the transaction demarcation for you. If you want to make sure that you always have
aconnection handy in every request, and that it gets commited if everything is OK, and rolled back

if something goeswrong, you can register aFi | t er inyour web application. We will also create a
Commons DBCP connection pool to give each thread a connection efficiently.

©2012, SYSE « ALL RIGHTS RESERVED.

http://commons.apache.org/dbcp/
http://commons.apache.org/dbcp/

4 Getting a connection

@\ebFilter("/*")
public class QueryFilter inplenments Filter {
private Basi cDataSource ds;

public void init(FilterConfig filterConfig) throws Servl et Exception {
ds = new Basi cDat aSource();
ds. setDriverC assNanme("org. postgresql.Driver");
ds.set Url ("] dbc: post gresqgl :/ host/ dbname");
ds. set Def aul t Aut oConmi t (f al se);
ds. set User name(" nyuser");
ds. set Passwor d(" nypassword") ;

public void doFilter(Servl et Request request, ServletResponse response,
FilterChain chain) throws | OException, ServletException {
try (Connection ¢ = ds.getConnection()) {
Query. connection.set(c);

chain.doFilter(request, response);

c.commt();
} catch (Exception ex) {
if (Query.connection.get() !'= null)

try { Query.connection.get().rollback(); }
catch (SQLException ignored) { }
t hrow new Servl et Excepti on(ex);

} finally {
Query. connection.renove();

}
}
public void destroy() {
try {
ds. cl ose();

} catch (SQ.Exception ex) {
ex. printStackTrace();

}

Inthei ni t method, we create a DataSource which is basically a pool of opened connections. We
make sure that the connections returned from the pool does not auto commit each transaction. This
way, we wrap the entire HTTP request in one SQL Transaction, and commit only if everything is
OK. Weroll back if an Exception occurs. Finally, the dest r oy method will close the datasource and

release all the connections.

Y ou might want to exclude certain patterns, like files etc from the filter, or use a more sofisticated

algoritm to determine if a connection should be provided.

All examplesin thistutorial will assume that you have already given the current thread a connection

using a strategy like the ones described here.

©2012, SYSE « ALL RIGHTS RESERVED.

5 Mappers 7

Mappers

5.1 Mappers

The main responsibility of a Mapper isto make sure that your SQL Resul Set is converted into your
domain objects. However, since you tell them about the columns in your database, they can aso be
used to automatically create the SQL to perform CRUD operations.

For now, we'll write Mappers for our example domain objects manually.

public class Mppers {
public static final Mapper<Country> countryMapper = new Mapper (Country. cl ass)
.tabl ename("country")
Lid("id", "id", "country_id", |NTECGER)
.property("name", "name", VARCHAR);

public static final Mapper<Address> addressMapper = new Mapper (Address. cl ass)
. tabl enanme(" addr ess")
Lid("id", "id", "address_id", |NTECGER)
.property(“"street”, "street", VARCHAR)
.property("zip", "zip", VARCHAR)
.property("city", "city", VARCHAR
.join("country", countryMapper, "country");

public static final Mapper<Custoner> custoner Mapper = new Mapper (Cust oner. cl ass)
. tabl ename(" cust oner")

Lid("id", "id", "custoner_id", |NTECGER)
.property("nanme", "name", VARCHAR)
.property("email"”, "email", VARCHAR)

.join("deliveryAddress", addressMapper, "delivery_address")
.join("billingAddress", addressMapper, "billing_address");

Tornado Query can auto-create Mapper objects by trying to match column names to domain object
properties. It will even figure out how domain objects fit together based on your database foreign
keys. After you have auto-created a Mapper, you are free to ater it manually, or you can ofcourse
write your mapper objects manually.

The Mapper #gener at e() method is used to auto-create Mappers. The generator creates one Java
class for each domain object, and adds a static final field for the actual Mapper. So, the Mapper for a
Customer object would be accessed via Cust onmer Mapper . FULL. You are free to store the Mappers
any way to like, infact in our example well create asingle class called Mappers, and put our Mappers
in there.

5.1.1 Country mapper

Let'sexamine the count r yMapper first. The constructor takes the domain object class asit's
argument. Next, we supply the name of the table (country). Thei d method maps the Country domain
object'si d tothei d column in the country database table. The third argument (country_id) tells

the Mapper that the id should be auto-generated by incrementing the country_id sequence. The last
argument isthej ava. sqgl . Types type of the database column. Y ou actually don't have to supply

©2012, SYSE « ALL RIGHTS RESERVED.

5 Mappers 8

this argument, Tornado Query can figure it out, and will cache the result. If you supply it, the first
guery will be a couple of milliseconds faster.

Asyou probably guessed by now, the pr oper t y method maps the nane field to the nanme column.

5.1.2 Address mapper

The addr essMapper starts out in much the same way as the countryM apper, except it has more
fields, mapped with pr oper t y mappings. The interesting bit however, isthej oi n method. This
single line will merge the count r yMapper into the count ry property of our Address domain object,
so that al fields joined in from country will be populated into our Address object.

Instead of referencing the count r yMapper , we could also have mentioned the fields from Country
directly inthe addr essMapper . The following example gives the exact same mapping possibilities,
but with more/explicit code:

public static final TableJdoin countryJoin = new Tabl eJoi n("country", "country")
.on("address.country = country.id");

public static final Mapper<Address> addressMapper = new Mapper (Address. cl ass)
. tabl enanme(" addr ess")
Lid("id", "id", "address_id", |NTECGER)
.property("street”, "street", VARCHAR)
.property("zip", "zip", VARCHAR)
.property("city", "city", VARCHAR
.property("country.id", "country", |NTEGER);
.join("country. name", countryJoin, "nane");

Here we created a Tabl eJoi n manually. The contructor takes the table name and an aliasto usein
the SQL as arguments. Then we give it information about how to perform the join in the on chaining
method.

Thecount ryJoi n TableJoin is then used as the second argument to thej oi n method, telling the
Mapper that the count ry. name nested property of our Cust onmer object should be filled with the
name column from the joined in country table.

For more information about Tabl eJoi n and join types, please see the JavaDoc.

Asyou can see, alot was given to us for free by referencing the count r yMapper , but sometimes you
want more control of how you configure your mappings. Under the hood, Tornado Query will create a
similar join table on-the-fly when you use the ssimple approach.

5.1.3 Customer mapper

Thecust oner Mapper referencesthe addr essMapper two times, for thedel i ver yAddr ess
and bi | I i ngAddr ess properties. Since the addr essMapper referencesthe count r yMapper,
our Customer will automatically know how to both map and join all the way to

del i ver yAddr ess. count ry. nane.

NOTE: It isimportant to understand that you can still write your query by hand, and still use the
Mapper to convert your ResultSet into a domain object. Y ou don't need to use the automatically
generated join, but it will save you alot of boiler plate SQL code.

©2012, SYSE « ALL RIGHTS RESERVED.

5 Mappers

For completeness, thisis how the cust omer Mapper would be written if you didn't reference the

addr essMapper :

Tabl eJoi n deliveryAddress = new Tabl eJoi n("address", "delivery_address")
.on("customer.delivery_address = delivery_address.id");

.on("delivery_address.country = delivery_address_country.id");

Tabl eJoin billingAddress = new Tabl eJoi n("address", "billing_address")
.on("customer.billing_address = billing_address.id");

Tabl eJoin billingAddressCountry = new Tabl eJoi n("country", "billing_address_country")
.on("billing_address.country = billing_address_country.id");

public static final Mapper<Custoner> custoner Mapper = new Mapper (Custoner. cl ass)
.tabl enane(" cust oner")

Lid("id", "id", "custoner_id", |NTEGER)
.property("nane", "name", VARCHAR)
.property("email", "email", VARCHAR)

.property("deliveryAddress.id", "delivery_address", |NTECER)
.join("deliveryAddress.street", deliveryAddress, "street", VARCHAR
.join("deliveryAddress. zip", deliveryAddress, "zip", VARCHAR)
.join("deliveryAddress.city", deliveryAddress, "city", VARCHAR)
.join("deliveryAddress.country.id", deliveryAddress, "country", VARCHAR)
.join("deliveryAddress. country. nane", deliveryAddressCountry, "nane", VARCHAR)
.property("billingAddress.id", "billing_address", |NTEGER)
.join("billingAddress.street", billingAddress, "street", VARCHAR)
.join("billingAddress. zi p", billingAddress, "zip", VARCHAR
.join("billingAddress.city", billingAddress, "city", VARCHAR)
.join("billingAddress. country.id", billingAddress, "country", VARCHAR)
.join("billingAddress. country.nane", billingAddressCountry, "nane", VARCHAR);

Tabl eJoi n deliveryAddressCountry = new Tabl eJoi n("country", "delivery_address_country!’

Executing:

Query. sel ect (cust oner Mapper) . rows();

Givesyou this SQL for free, and maps your result to aLi st <Cust onmer >:

©2012, SYSE « ALL RIGHTS RESERVED.

5 Mappers

SELECT

FROM

customer.id,

cust oner . nane,

customer. emai |

custoner. del i very_address,

del i very_address. street AS delivery_address_street,
del i very_address. zip AS delivery_address_zip,
delivery_address.city AS delivery_address_city,

del i very_address. country AS delivery_address_country,
del i very_address_country. name AS delivery_address_country_nane,
custoner. billing_address,

billing_address.street AS billing_address_street,
billing_address.zip AS billing_address_zip,
billing_address.city AS billing_address_city,

bi |l l'ing_address.country AS billing_address_country,
billing_address_country.name AS billing_address_country_nanme
cust onmer

JO N address AS delivery_address

ON cust orer. del i very_address = delivery_address.id
JO N country AS delivery_address_country

ON del i very_address. country = delivery_address_country.id
JO N address AS billing_address

ON customer.billing_address = billing_address.id
JO N country AS billing_address_country
ON billing_address.country = billing_address_country.id

I'm pretty sure you realize the potential savings by using the full power of Mappers by now :)

5.2 RowConverters - native ResultSet to domain objects mapping

The Mapper uses reflection to convert a ResultSet into domain objects. It takes care of instantiation
objects in deep object graphs to avoid null pointer exceptions, and it is very fast. However, nothing

10

can beat the speed of explicitly converting a ResultMap to a domain object, so you can choose to add
aRowConvert er to your Mapper to do exactly this.

NOTE: Using aRowConvert er isvery seldom needed, and the speed of the default reflection based
mapping should be adequate for most uses cases. However, it might be worth the extra code in cases

where you need to convert ResultMap entries into exotic domain members, or to map to adomain
object that can only be created correctly through calling a specific constructor method for example.

Let'sadd a RowConvert er to our CountryMapper:

count ryMapper. rowConverter (new RowConverter<Country>() {

public Country convert(ResultSet rs) throws SQ.Exception {
Country country = new Country();
country.setld(rs.getlnt("id"));
country. set Name(rs.get String("nanme"));
return country

}

1)
©2012, SYSE « ALL RIGHTS RESERVED.

5 Mappers 11

5.3 Auto increment / sequences
Thei d method isjust a shortcut for the following:

String property = "id";

String colum = "id";

int sql Type = java. sql. Types. | NTEGER;

Mappi ng mappi ng = new Mappi ng(property, colum, MpType. PRI MARY_KEY)
.sqgl Type(sql Type).sequence("id");

/1 Add to mapper

.property(colum, napping);

By setting the MapType to PRI MARY_KEY wetell the Mapper about what column to join on, and what
fieldsto usein byl d queries. The sequence property is again a shortcut to automatically retrieving
asequence value for thei d property of the domain object. This can also be done manually in an

| NSERT statement, see INSERT usage for more information.

©2012, SYSE « ALL RIGHTS RESERVED.

6 Usage 12

6.1 Usage

In the following we'll look at how to perform actual queries against our database. Tornado Query was
created with one main goal: Let you write SQL explicitly, and map the results to/from your domain
objects. There was nevery any intention for Tornado Query to do magica stuff, like Hibernate, JPA
and the likes.

Asit turns out, describing the mappings between table columns, table relations and domain objects,
you have already told Tornado Query enough to do automatic CRUD with joins, so it would be
foolish to not support this. Even so, you can still do everything manually, and just use the Mappers for
the actual mapping of the ResultSet.

Because of thisfact, the tutorial shows you how to perform queries the manual way first, and then
you'll see how Mappers can make life easier.

NOTE: It isimportant to realize that you can create multiple Mappers for the same domain objects.
The default name of Cust oner Mapper . FULL indicates that the autocreated Mapper perform full
joins. You can add aCust omer Mapper . S| MPLE to be used in SELECTs where you don't need joins.
Y ou can also use the FULL Mapper with amanual SELECT that does not perform any joins, even if it
mentions fields not in the ResultSet.

6.Tips and tricks
Some tricks are used across all query operations, and we'll briefly talk about some of them here.

6.1.2 Appending SQL to a query

When you first create a Query object, you can choose to give it some SQL right away, or you can add
SQL using the add command. Both commands support varargs as well, so these are all equivalent:

Query. create("SELECT * FROM country WHERE id = 1");

Query. creat e("SELECT *",
"FROM country",
"WHERE id = 1");

Query. create()

.add(" SELECT *")

. add(" FROM country")
.add("WHERE id = 1");

Tornado Query will automatically introduce whitespace where needed. There are lots of mutators like
addl f, addUnl ess, r epeat etc that are further described inthe SELECT part of this tutorial.

©2012, SYSE « ALL RIGHTS RESERVED.

7 INSERT 13

INSERT

7.1 INSERT

7.1.1 Manual INSERT

Let's start with manually inserting a Count ry in our example database. For this, we don't need a
Mapper, and the code is straight forward:

Query.create("I NSERT | NTO country (nanme) VALUES (' Norway')").insert();

Let's supply the country name as parameter instead, to avoid SQL injection if the country came from
an untrusted source:

Query.create("I NSERT | NTO country (name) VALUES (:nane)")
. paran("nanme", "Norway").insert();

We might want to insert the data from a domain object:

Country country = new Country("Norway");
Query.create("I NSERT | NTO country (nane) VALUES (:nane)").paran{country).insert();

The country object was set as the root parameter, so that we can look up values using the object's
properties directly. We can also supply the country as a named parameter:

Query.create("I NSERT | NTO country (nane) VALUES (:country.nane)")
.paran("country", country).insert();

Since our database schema for the country table dictated a default value for the id field from the
count ry_i d SEQUENCE, we have automatically gotten an id, but we had no way of retrieving it.
We can manually increment the sequence and put the result in the id property of our Count r y object:

Query.create("I NSERT | NTO country (name) VALUES (:nane)")
. paran{country)
.key("id", "SELECT nextval ('country_id)")
.insert();

After theinsert is performed, count ry. i d will contain the id from the sequence. There is a shortcut
for the key method called sequence:

Query.create("I NSERT I NTO country (nanme) VALUES (:nane)")
. paran{ country)
.sequence("id", "country_id")
.insert();

7.1.2 MySQL LAST_INSERT_ID

After performing an INSERT against MySQL you can use the convenience call
Query.lastlnsertld().

©2012, SYSE « ALL RIGHTS RESERVED.

7 INSERT 14

7.1.3 INSERT with a Mapper

Take agood look at the count r yMapper we created earlier. Y ou can seethat it already mentions the
table name and both id and name fields, and it even knows about the sequence for theid field. We can
take advantage of that to have it automatically write the | NSERT statement for us:

Query.insert(countryMapper, country);

Wow, that was easy! And redlly, thereis no magic here - writing an INSERT is mostly about
enumerating columns and giving them the right values, so you wouldn't want to do that manually
unless there is something very spesific and special about your usecase. Keep it DRY!

NOTE: If you use a mapper that has join columns, Tornado Query is smart enough to understand
what columns are native to the table you are inserting into, and skips those that describe columnsin
other tables. Tornado Query only saves your main object, there is no magical traversal down to child
objects that don't have ids etc. Tornado Query is here to help you, but it refuses to perform magic
tricks:)

©2012, SYSE « ALL RIGHTS RESERVED.

http://en.wikipedia.org/wiki/Don%27t_repeat_yourself

8 UPDATE 15

UPDATE

8.1 UPDATE

8.1.1 Manual UPDATE
Again we start with manually updating a Count ry inour example database.

Query. creat e("UPDATE country SET nanme = 'Norway' WHERE id = 1").update();

Again, to avoid SQL injection we'll send in the values as parameters:

Query. creat e("UPDATE country SET nane = :nane WHERE id = :id")
.paran("nanme", "Norway").param("id", 1).update();

Update an existing domain object:

Query. creat e("UPDATE country SET nane = :nane WHERE id = :id")
. paran{country). update();

We can also supply the country as a named parameter:

Query. creat e("UPDATE country SET nane = :country.name WHERE id = :country.id")
.paran("country", country).update();

8.1.2 UPDATE with a Mapper
Aswith | NSERT, Tornado Query can automatically write the UPDATE statement for us:

Query. updat e(count r yMapper, country);

Since the countryM apper was created with ani d method, it knows how to construct the WHERE clause
for the update. Thisistrue even if there are multipleid fieldsin the Mapper.

NOTE: The Query. updat e() method will return the number of rows that was altered.

©2012, SYSE « ALL RIGHTS RESERVED.

9 DELETE 16

DELETE

9.1 DELETE

9.1.1 Manual DELETE
WEe'll delete aCount ry inour example database. First inline:

‘Qjery. create("DELETE FROM country WHERE id = 1").delete(); ‘

Again, to avoid SQL injection we'll send in the id as a parameter:

‘QJery.create("DELEI’E FROM country WHERE id = :id").param("id", 1).delete(); ‘

Delete using an existing domain object:

Query. creat e("DELETE FROM country WHERE id
.paran{country).delete();

Sid")

We can also supply the country as a named parameter:

Query. creat e("DELETE FROM country WHERE id = :country.id")
.paran("country", country).delete();

9.1.2 DELETE with a Mapper
Aswith | NSERT and UPDATE, Tornado Query can automatically write the DELETE statement for us:

Query. del et e(count ryMapper, country);

Since the countryM apper was created with ani d method, it knows how to construct the WHERE clause
for the delete. Thisistrue even if there are multipleid fieldsin the Mapper.

NOTE: The Query. del et e() method will return the number of rows that was del eted.

©2012, SYSE « ALL RIGHTS RESERVED.

10

10 SELECT 17

SELECT

10.1 SELECT

10.1.1 SELECT without a Mapper and no domain object

Even when you don't use a Mapper, oneis automatically created behind the scenes. The Mapper is
then primarily used for caching information so that subsegquent operations can be performed faster.
That being said, it is always recommended that you use a predefined, st ati c fi nal Mapper for
best performance.

If you don't supply a Mapper, and maybe you don't even have a domain object, you can get the results
from the database as either aHashMap or aLi st <HashMap>. This can be OK for small operations:

‘Ivap country = Query. create(HashMap. cl ass, "SELECT * FROM country WHERE id = 1").fi rst{);

Thefirst () method will retrieve the first row that matches your query and turn the ResultSet into a
HashMap. Y ou can also obtain and use a new Query element this way:

‘l\/ap country = new Query<HashMap>().sel ect ("SELECT * FROM country WHERE id = 1").first {)

It isrecommended to use the static cr eat e approach, asit has more convenience methods. Let's send
inthei d value as a parameter, and return alist of Countries using ther ows() method:

Map country = Query. create(HashMap. cl ass)
.add(" SELECT * FROM country WHERE id < 100")
.paran("id", 100)
.rows();

10.1.2 SELECT without a Mapper, but with domain object

Even without a Mapper, Tornado Query can still convert the ResultSet into your domain object. Y ou
will only get columns mapped to fields where the name is the same, or where underscores in the
columns can be swapped out for camel Case syntax in the domain object. So you can write:

Country country = Query. create(Country. cl ass,
"SELECT * FROM country WHERE id = 1").first();

Though thisworks, it is highly recommended to create a Mapper for your domain objects.

10.1.3 SELECT with a Mapper
Thisiswhere Tornado Query shines! The basic select is then turned into:

‘Country country = Query. sel ect (countryMapper).where("id = :id").paran("id", 1).first(i;

There is also a shortcut to select by id:

‘Oountry country = Query.byld(countryMapper, 1).first(); ‘

10.1.4 Joins

Let's query for a Customer object instead. First well insert a country and an address, along with a
customer. Then we'll perform some queries against this customer.

©2012, SYSE « ALL RIGHTS RESERVED.

10 SELECT 18

Country usa = new Country(1, 'USA);
Query.insert(countryMapper, usa);

Addr ess address = new Address("Sesane Street", "10001", "New York", usa);
Query.insert (addressMapper, address);

Cust omer customer = new Custoner("Edvin Syse", "ny@nmail.addr");
cust onmer. set Del i ver yAddr ess(addr ess) ;

custoner. setBi |l | i ngAddr ess(addr ess);

Query.insert(custoner Mapper, custoner);

First we insert the country. No surprises there. Next up is the address, which references the country.
Lastly, we insert a customer, which references the address two times, for thedel i ver yAddr ess and
bi I I'i ngAddr ess fields.

Now let's select a customer. Since our cust omer Mapper referencesthe addr essMapper , and the
addr essMapper references our count r yMapper , we'll get automatic joins if we select using the
cust onmer Mapper .

Cust omer custonmer = Query. byl d(custoner Mapper, 1).first();

The above select query will turn into the same SQL sentence you saw in the Mappers introduction.

10.1.5 Dynamic mutators

Sometimes, part of the mutators are only supposed to be applied depending on certain conditions.
Concider the following query:

Customer customer = Query. sel ect (cust onmer Mapper)
.where("id = :id")
.and("nanme = :nane")
.paran(...)
first();
Firstly, theand("nane = : nane") isjust ashortcut for writing add(" AND nane = : nane").

Let's suppose that this query was part of a DAO guery, where both id and name was optional
parameters. Then it would make sense to only add the mutators that was actually sent to the method:

public Customer getCustoner(Integer id, String nane) {
return Query. sel ect (cust oner Mapper)
. where()
.addlf(id = null, "id =:id")
.addlf(nanme !'= null, "nane = :nane")
.param("id", id)
. paran("nanme", nane)
first();
}

Thewher e() method will make sure that a WHERE expression is added to the statement if any
additional mutators are added. Second, the add! f () will only add the following sentence to the query
if the expression istrue. Thereisan addunl ess method as well, to make your code more readable.

©2012, SYSE « ALL RIGHTS RESERVED.

10 SELECT 19

NOTE: If you dislike this approach, you can create your query any way you like, using any
programmatic approach you feel comfortable with, aslong as the named parameters you mentioned in
your SQL sentence is added as par an() 'sto your query.

This makes sure that even the corner cases can be handled elegantly. The Query class accepts normal
SQL, there is no magic, so you should never need to drop out to a plain old Connection. If you need it
though, it's still available viaQuery. connecti on. get ().

10.1.6 Repeaters

Especialy when performing "search” queries, we often repeat part of the SQL sentence multiple
times. Tornado Query can express this elegantly. Concider the following SQL query:

SELECT *

FROM users

VWHERE UPPER(usernane) LIKE UPPER(' % n')
OoR UPPER(user nane) LIKE UPPER(' %mon%)
OoR UPPER(user nane) LIKE UPPER(' man')

Thi

sishow you would write it using Tornado Query:

Li st<String> usernanes = Arrays. asList ("% n", "%mon%, "nan");

Li st <User > users = Query.create(User.cl ass)
.select().from"users").where()
.repeat ("OR', "UPPER(usernane) LIKE UPPER(:usernanes[])")
. paran{"usernanes", usernanes)
.rows();

Here we didn't use aresultMap, and selected straight from afictive table caled user s. The
r epeat () method made sure that each entry in the user nanmes list would result in another LI KE
guery for that particular username, glued together with an OR.

10.1.7 Want more?

We have just scratched the surface of what you can do with Tornado Query. Consult the JavaDoc
for more information or email me at es@syse.no. If you have any questions or would like to see
additional stuff covered in thistutorial.

©2012, SYSE « ALL RIGHTS RESERVED.

mailto:es@syse.no

11

11 Logging 20

Logging

11.1 Logging

Tornado Query uses SLF4Jfor logging. You should provide al og4j . properti es inyour
application to make sure you receive the wanted logging information.

A good starting point is this configuration:

| 0g4j

| 0g4j

| 0g4j

| 0g4j

| 0g4j .

. root Logger =ERROR, Al
.1 ogger . org. apache. commons. beanuti | s. convert er s=ERROR
. appender . Al=or g. apache. | og4j . Consol eAppender

appender. Al. | ayout =or g. apache. | og4j . Pat t er nLayout
.appender. Al. | ayout . Conver si onPatt er n=%a{1 SO8601} [%] %5p % 9 - %dm

If you want to output the SQL statement that Tornado Query executes, you can set the log level to
DEBUG. Y ou can also retrieve the SQL to be executed by printing out the statement created by the
pr epar e method:

String sql = Query. byl d(Cust oner Mapper. FULL, 1).prepare().toString()

©2012, SYSE « ALL RIGHTS RESERVED.

http://www.slf4j.org/

	Table of contents
	Introduction
	Getting Started
	Example database
	Getting a connection

	Mappers
	Usage
	INSERT
	UPDATE
	DELETE
	SELECT

	Logging

